

Four Color Theorem: Given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.

Source: Wikipedia

Note that a tiling is a special kind of map. Therefore, all tiling patterns can be colored using at most 4 colors!

-																
-										_						
-							 		 		 	 				
-							 		 			 				
<u> </u>									 							
																_
																_
-																
-																

