

Four Color Theorem: Given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.

Source: Wikipedia

Note that a tiling is a special kind of map. Therefore, all tiling patterns can be colored using at most 4 colors!

											 			_	
											 			_	
														_	
											 			_	
	 										 			_	

