THE GOLDEN RATIO AND
THE FIBONACCI NUMBERS

Common Measures

φ

1.618033988749894…

The origins of φ are shrouded in the mists of time

The Golden Ratio: φ

- In modern times is denoted by the symbol phi: φ
- Known to Euclid (300 B.C.) as a result of solving:

$$
x^{2}-x-1=0
$$

- A number of painters and architects have used the golden ratio in their work
- The length of a diagonal of a regular pentagram, whose sides have unit length, is φ
- Occurs in nature - represents a growth pattern

Legend and Speculation

- Was known to the ancient Egyptians.
- Was used to form the dimensions of the Great Pyramids of Egypt.
- Was applied to the design of the Parthenon.
- Was used in the design of Notre Dame in Paris.
- Was used in the construction of the Taj Mahal.

The Parthenon

III Ratio of a Rectangle

a

b

Ratio $=\frac{a}{b}$

||| Another Ratio

a
a

$$
\text { Ratio }=(a+b) / a
$$

These two rectangles have a divine proportion if:

$$
\frac{a+b}{a}=\frac{a}{b}
$$

The Algebra

$$
\begin{aligned}
& \frac{a+b}{a}=\frac{a}{b} \\
& b(a+b)=a^{2} \\
& a^{2}-a b-b^{2}=0
\end{aligned}
$$

Letting $b=1$ gives us:

$$
a^{2}-a-1=0
$$

Whose only positive solution is φ

Golden Ratio

- Numerically the golden ratio is:

$$
\varphi=\frac{1+\sqrt{5}}{2}=1.61803 \ldots
$$

- This comes from solving $x^{2}-x-1=0$ using the quadratic formula:

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- All rectangle pairs that are in divine proportion to each other will have this ratio.
a

$$
\text { Ratio }=(a+b) / a
$$

If these two rectangles have a divine proportion then:

$$
\frac{a+b}{a}=\frac{a}{b}=\varphi
$$

Il|| Fibonacci Numbers

The Original Problem

- Stated by Fibonacci (whose original name was Leonardo of Pisa) in the year 1202
- Gives a recursive rule for computing the total number of rabbit pairs under "ideal" reproductive circumstances.

Problem Statement

- Start with a rabbit pool containing one pair of newly born rabbits (one male and one female)
- A newly born rabbit takes one month to reach reproductive maturity
- The gestation period of a reproductively mature female rabbit is one month
- A female rabbit will always give birth to two rabbits - one male and one female
- This newly born pair is added to the rabbit pool
- Question: How big is the rabbit pool after

12 months?
n months?

Fibonacci Sequence

- Starting from 1

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

- Starting from o

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

In Flowers

The pedal count of many flowers are Fibonacci numbers (this is a known growing pattern)

$1,2,3,5,8,13,21,34,55,89, \ldots$

white calla lily

$1,2,3,5,8,13,21,34,55,89, \ldots$

Euphorbia

$1,2,3,5,8,13,21,34,55,89, \ldots$

Trillium

$1,2,3,5,8,13,21,34,55,89, \ldots$

Buttercup

$1,2,3,5,8,13,21,34,55,89, \ldots$

Bloodroot

$1,2,3,5,8,13,21,34,55,89, \ldots$

Black eyed Susan

$1,2,3,5,8,13,21,34,55,89, \ldots$

Shasta Daisy

$1,2,3,5,8,13,21,34,55,89, \ldots$

Field Daisies

$1,2,3,5,8,13,21,34,55,89, \ldots$

Michelmas Daisies

$$
\lim _{n \rightarrow \infty} \frac{f i b(n+1)}{f i b(n)}=\varphi
$$

II Approaching the Golden Ratio
fib(n+1)
fib(n)
$1,1,2,3,5,8,13,21,34, \ldots$

